Term S – TP - Chap 06 : Mouvement de rotation

I) Analyse

On étudie le mouvement de rotation de la Terre autour du Soleil .

* Définir le système, le référentiel et le mouvement.

* Faire le bilan des forces extérieures exercées sur le système en précisant direction, sens et norme.

II) Etude de la vidéo avec Avimeca :

Ouvrir la video Rotation de la Terre avec Avimeca

La distance Terre-Vénus vaut 109 millions de km.

* Etalonner la vidéo et choisir le repère et l'origine. (si besoin, voir notice Avimeca)

* Pointer la position de la Terre de l'image 1 à l'image 47

* Transférer les valeurs du tableau dans le presse papier.

Le temps de la vidéo n'est pas réel, il faut le multiplier par le coefficient 10^7 .

* Dans Excel, coller le tableau d'Avimeca. On calcule le temps réel noté t_R dans la colonne D.

Dans la case D4 : = A4 * 1 E 07. Recopier cette case vers le bas. (si besoin, voir notice Excel)

Copier la colonne D puis Collage spécial (valeurs uniquement) dans la colonne A.

Copier les cases de A2A50,B2B50,C2C50 dans le presse-papier.

(Ne pas sélectionner les 3 colonnes A,B et C entières sinon Regressi pose problème)

* Ouvrir Regressi. Coller le presse-papier avec Nouveau, presse-papier. Clic sur le bouton Graphe Créer un nouveau graphique : Menu graphes, Ajouter 2^e graph. Sélectionner ce graphique.

Pour ce graphique, on veut afficher y en fonction de x. Menu Axes. Supprimer x=f(t)

Pour y=f(t), changer l'abscisse t en x. Il faut un repère orthonormé.

En bas, cocher ☑ repères orthonormés ; ☑ vitesse et ☑ accélération. Ok

* Que peut-on dire du vecteur vitesse (direction et valeur)?

* Que peut-on dire du vecteur accélération (direction et valeur)?

* Cela confirme-t-il le mouvement défini au I) ?

III) Modélisations :

Ouvrir la fenêtre de modélisation (clic sur la barre verticale à gauche)

On veut modéliser la vitesse et l'accélération en fonction du temps.

Modifier le graphique x et y en fonction de t pour afficher la vitesse . Sélectionner le graphique. Menu Axes . Supprimer x(t), changer y en v.

Entrer une fonction $v(t) = \dots$ dans la fenêtre de modélisation. Conclusion : $v(t) \dots$

Modifier le graphique v en fonction de t pour afficher l'accélération. Menu Axes . Changer v en a. Entrer une fonction $a(t) = \dots$ dans la fenêtre de modélisation. Conclusion : $a(t) \dots$ Utiliser la relation du cours : a = f(v). Entrer cette relation dans la fenêtre de modélisation à la

place de la précédente. $a(t) = \dots$

Cette relation est-elle vérifiée dans notre étude ?. En déduire la valeur de la distance Terre-Soleil

IV) Analyse théorique :

- * Faire un schéma avec la trajectoire de la Terre, le Soleil, la force et les vecteurs \vec{N} et \vec{T} .
- * Appliquer la 2^{ème} loi de Newton en précisant système et référentiel.
- * En déduire les coordonnées a_N et a_T de \vec{a} .
- * Indiquer les relations de cours de a_N et a_T en fonction de v.
- * En déduire l'expression de v^2 . Exprimer la masse du Soleil en fonction de v.
- * En utilisant la valeur de v de la modélisation de Regressi, calculer la masse du Soleil.
- * Comparer cette valeur à la masse réelle du Soleil (à chercher sur Internet ou dans le livre)