Chap 09 - Dipôle RL
Une bobine est un dipôle constitué d'un enroulement d'un fil conducteur de faible résistance r, enrobé d'un isolant.
Une
bobine est équivalente à l'association en série d'une bobine de résistance
nulle et d'un conducteur ohmique de résistance r.
Son symbole est donc celui de l'association d'une résistance r et d'une bobine de résistance nulle :
En convention récepteur, u et i sont en sens opposé.
On
réalise le montage ci-contre :
Réglages du GBF : f = 320 Hz, U = 2 V ; R = 680 Ω ; bobine avec fer doux
On choisit une tension périodique triangulaire pour le générateur.
On visualise les tensions, on peut utiliser un oscilloscope ou un ordinateur munie d'une interface.
La voie 1 permet de visualiser la tension de la bobine et la voie 2 montre la tension u2, soit –R.i
On peut inverser la voie 2 pour montrer uR . Cette voie montre au coefficient R près la variation de l'intensité i.
L'intensité i est triangulaire de période T. Sur une demi-période de 0 à T/ 2 , la courbe est une droite,
i = a.t + b , di/dt
= a = constante.
Ceci est valable quelque soit l'intervalle choisi, seul le signe de a change.
La tension uL est aussi constante sur une demi-période,
on peut donc écrire :
uL = L.di/dt avec L constante,
appelée inductance de la bobine , son unité est le Henry (H)
(si r résistance de la bobine négligeable)
Si la résistance de la bobine n'est pas négligeable, c'est une association série d'un conducteur ohmique et d'une bobine de résistance nulle. : uL = r.i + L.di/dt
EL = ½ L.i2 avec EL en joule (J) , L en henry (H) et i en ampère (A)
On
réalise le montage ci-contre :
L'ordinateur permet de tracer la courbe i = f(t)
(i = uR / R)
On choisit un générateur de tension continu E.
On
ferme l'interrupteur K à t = 0 s et on l'ouvre à
t = 70 s.
Observations :
Lorsqu'on ferme l'interrupteur, l'intensité i croît progressivement de manière exponentielle jusqu'à une valeur maximale.
Lorsqu'on ouvre l'interrupteur, l'intensité i décroît progressivement de manière exponentielle jusqu'à une valeur minimale.
Interprétations :
Lorsqu'on ferme l'interrupteur, le courant s'installe progressivement, sans la bobine, il aurait instantanément la valeur finale.
La bobine s'oppose à l'apparition du courant.
Lorsqu'on ouvre l'interrupteur, le courant diminue progressivement, sans la bobine, il s'annulerait instantanément, la bobine s'oppose à la disparition du courant.
Conclusion: Une bobine s'oppose aux variations de l'intensité du courant dans le circuit.
a) A l'établissement du courant :
Etude de l'intensité i :
Loi d'additivité : uR + uL = E ⇒ R.i + L.di/dt = E (1) (équation différentielle pour i)
solution de l'équation : i = a + b.e – t / τ ; di/dt = - b.e – t / τ /τ
(1) R.( a + b.e – t / τ ) – L.b.e – t / τ /τ = E Ceci est valable quelque soit l'instant t, il faut donc :
R.a = E et R.b – L.b / τ = 0 ⇒ a = E / R et τ = L / R
τ
est la constante de temps du dipôle RL .
Pour déterminer b, on utilise la valeur de i à t = 0 s : i = 0 = E / R + b.e 0 ⇒ b = - E / R
i = E/R ( 1 – e – t / τ ) avec τ = L / R (en s)
Etude de la tension uL :
uL = L.di/dt = L.E/R.e – t / τ / τ avec τ = L / R ⇒ uL = E.e – t / τ
On peut aussi utiliser la loi des tensions : uL + uR = E ⇒ uL = E – R.( E/R (1 –e- t / τ ) = E.e- t / τ
uL = E. e – t / τ avec τ = L / R
b) A la rupture du courant :
Etude de l'intensité i :
Loi d'additivité : uR + uL = 0 ⇒ R.i + L.di/dt = 0 (1) (équation différentielle pour i)
solution de l'équation : i = a + b.e – t / τ ; di/dt = - b.e – t / τ /τ
(2) R.( a + b.e – t / τ ) – L.b.e – t / τ /τ = 0 Ceci est valable quelque soit l'instant t, il faut donc :
R.a = 0 et R.b – L.b / τ = 0 ⇒ a = 0 et τ = L
/ R
τ
est la constante de temps du dipôle RL .
Pour déterminer b, on utilise la valeur de i à t = 0 s : i = E / R = b.e 0 ⇒ b = E / R
i = E/R e – t / τ avec τ = L / R (en s)
Etude de la tension uL :
uL = L.di/dt = - L.E/R.e – t / τ / τ avec τ = L / R ⇒ uL = - E.e – t / τ
On peut aussi utiliser la loi des tensions : uL + uR = 0 ⇒ uL = – R.E/R e- t / τ = - E.e- t / τ
uL = - E. e – t / τ avec τ = L / R
1ère
méthode :
Lors de l'apparition du courant (fermeture du circuit), pour trouver τ, on trace la tangente à l'origine, elle coupe l'asymptote (i = E/R) à l'instant τ.
Lors de la disparition du courant, on trace la tangente à la courbe à l'instant t0 d'ouverture du circuit, elle coupe l'axe des abscisses à l'instant t0+ τ ( on considère t0 comme nouvelle origine)
2ème méthode : Lors de l'apparition du courant, à l'instant τ, l'intensité vaut 63% de sa valeur maximale E/R. Lors de la disparition du courant, à l'instant t0+τ, l'intensité vaut 37% E/R.
[L / R] = [L] / [R] or R = U / I ⇒ [R] = U.I-1
uL = L.di/dt ⇒ [L] = U.T.I-1 ⇒ [L / R] = (U.T.I-1).(U.I-1)-1 ⇒ [L / R] = T
τ = L / R a la dimension d'une durée, est appelé constante de temps du dipôle RL et s'exprime en seconde
(si R est en ohm (Ω) et L en henry (H)).
L'intensité traversant une bobine ne subit pas de brusque variation, c'est une fonction continue.
©Sciences Mont Blanc