Chap 14 – Satellites et planètes
Copernic Nicolas, montre que la Terre et les autres planètes du système solaire, tournent autour du Soleil (1543).
Kepler formule trois lois sur le mouvement des planètes autour du Soleil (1609).
Une ellipse est l'ensemble des points dont la somme des distances
à deux points fixes
( les foyers F et F' ) est constante :
PF + PF' = AA’ = 2a (AA’ grand axe , BB' petit axe)
Un cercle est une ellipse dont les deux foyers sont confondus. AA’ = BB' = D = 2 r
( r : rayon du cercle) , a = r
Remarque : Pour tracer une ellipse, on peut utiliser une ficelle de longueur 2a et on en fixe les extrémités avec 2 punaises à l'emplacement des foyers. On trace l'ellipse en tendant la ficelle avec le crayon et en tournant autour des foyers.
Ce repère mobile est défini par deux vecteurs unitaires
et
.
Le vecteur unitaire
est tangent à la trajectoire et orienté dans
le sens du mouvement.
Le vecteur unitaire
est perpendiculaire à la trajectoire et orienté vers l'intérieur de la courbe.
Dans le référentiel héliocentrique, la trajectoire du centre d'une planète est une ellipse dont le Soleil S est l'un des foyers.
Dans le référentiel héliocentrique, les aires balayées par le segment SP reliant le centre du Soleil S et celui de la planète P pendant des durées égales sont égales.
Les aires jaune et orange sont égales si elles sont balayées dans une même durée.
Si cette aire est centrée autour de A, la distance parcourue sur l'ellipse est alors la plus grande.
La vitesse en A, point le plus rapproché du Soleil est donc la plus grande..
Si cette aire est centrée autour de A', la distance parcourue sur l'ellipse est alors la plus petite.
La vitesse en A', point le plus éloigné du Soleil est donc la plus petite.
Dans le référentiel héliocentrique, le rapport entre le carré de la période de révolution T d’une planète autour du soleil et le cube du demi-grand axe ( a = AA'/2 ) de l'ellipse est constant : T2 / a3 = constante
La constante ne dépend que de la masse du Soleil , elle est donc identique pour toutes les planètes du système solaire.
Cas d'une trajectoire circulaire : a = D / 2 (D : diamètre) , a = r . 3ème loi de Kepler : T2 / r3 = Cte
Les lois de Kepler sont valables pour les satellites de la Terre dans le référentiel géocentrique , ils ont une trajectoire circulaire dont le centre est celui de la Terre.
La constante figurant dans T2 / a3 = constante ne dépend alors que de la Terre.
La vitesse est tangente à la trajectoire :
= v .
L’accélérationest
la somme de composantes tangentielle
T
et normale
N
= d
/dt = dv/dt .
+ (v2 / r ).
(admis)
L'accélération est dirigée vers l'intérieur de la trajectoire.
aT = dv/dt : accélération tangentielle . aN = v² / r : accélération normale.
Un solide de trajectoire circulaire à vitesse constante est animé d'un mouvement circulaire uniforme.
= v .
. Sa valeur v est constante mais
sa direction varie.
On a donc : dv/dt = 0 , aT = 0 , a = aN = v2 / r .
Remarque : v = r . ω où ω est la vitesse angulaire.
Période de révolution T (durée d’un tour) : v = P / T = 2 π. r / T ; T = 2 π. r / v
Deux corps A et B (à répartition sphérique
de masse) exercent l'un sur l'autre une force attractive gravitationnelle
dirigée par la droite AB.
A / B = -
B / A = - G . MAMB/ AB2
AB
AB
: vecteur unitaire dirigé de A vers B.
G : constante de gravitation universelle : G = 6,67.10 - 11 U.S.I
Au voisinage de la Terre, cette force est appelée le poids
.
F = P = m . g = G . m . MT / RT2 , g = G . MT / RT2
Il a une position fixe dans le référentiel terrestre, il est toujours à la verticale d'un même point de la Terre.
Pour être géostationnaire, un satellite doit avoir une trajectoire circulaire dans le sens de rotation de la Terre, dans un plan perpendiculaire à l'axe Nord-Sud et comme tout satellite terrestre, son centre est celui de la Terre, la trajectoire est donc dans le plan de l'équateur.
Sa période T de révolution doit être égale à celle de la Terre (≈ 24 h) et cela impose une altitude de 36 000 km.
Titan, le plus gros satellite de Saturne, situé à une distance R de Saturne. L’excentricité orbitale des satellites étant très faible, on supposera leurs trajectoires circulaires.
Saturne (de centre S) et ses satellites sont des corps dont la répartition des masses est à symétrie sphérique.
Les rayons des orbites des satellites sont supposés grands devant leur taille.
On considère que la seule force gravitationnelle exercée sur Titan provient de Saturne.
Données : G = 6,67.10-11 S.I. : constante de gravitation universelle.
Titan : RT = 1,22.106 km (rayon de l’orbite de Titan).
Saturne : RS = 6,0.104 km (rayon de la planète Saturne) ; TS = 10 h 39 min (période de rotation de Saturne sur elle-même).
MS = 5,69.1026 kg (masse de Saturne).
1) Définir le référentiel d'étude.
2) Nommer la (les) force(s) extérieure(s) appliquée(s) au satellite Titan, de masse MT.
3) Schématiser Saturne, Titan, et la(les) force(s) extérieure(s) appliquée(s) sur Titan.
4) Donner l’expression vectorielle de cette(ces) force(s).
5) Exprimer l'accélération vectorielle du centre d’inertie T de Titan en précisant la loi utilisée.
6) On se place dans le repère orthonormé (
,
) centrée en T dans laquelle
est un vecteur unitaire porté
par la tangente à la trajectoire et orienté dans le sens du mouvement et
un vecteur unitaire perpendiculaire à
et dirigé vers l’intérieur de la trajectoire.
= at .
+ an
.
Donner les expressions littérales de at et de an en fonction de la vitesse v du satellite.
7) A quelle composante se réduit l’accélération vectorielle
de Titan dans le repère (
,
) ?
Compléter le schéma précédent, avec le repère (
,
) et l’accélération
de
Titan.
8) Montrer que le mouvement de Titan est uniforme.
9) Retrouver l’expression de la vitesse de Titan orbite autour
de Saturne : v = (G.MS / RT)
Après le survol de Titan, la sonde Cassini a survolé le satellite Encelade
en février 2005.
Dans le référentiel saturno-centrique, le satellite Encelade a un mouvement de révolution circulaire uniforme, dont la période (en jour terrestre), est TE = 1,37 et le rayon est RE.
10) Déterminer une relation liant la période T d’un satellite,
sa vitesse v et le rayon R de son orbite. Sa vitesse de révolution autour de Saturne est donnée par : v =
(G.MS / R)
11) Retrouver la troisième loi de Kepler T2 / RE3 = 4 π2 / (G.MS)
12) Déterminer la valeur du rayon RE de l’orbite d’Encelade.
On cherche à déterminer l’altitude h à laquelle devrait se trouver la sonde Cassini pour être saturno-stationnaire (immobile au-dessus d’un point de l’équateur de Saturne).
13) Quelle condition doit-on avoir sur les périodes TS (rotation de Saturne sur elle-même) et TC (révolution de Cassini autour de Saturne) pour que la sonde soit "satumo-stationnaire" ?
14) Montrer que l’altitude h de la sonde peut s'écrire :
h = 3 (TC2.G.MS / (4
π2) – RS
15) Calculer la valeur de h.
Solution :
1) On utilise le référentiel saturno-centrique galiléen, solide formé par le centre de Saturne et les centres de 3 étoiles lointaines .
2) On néglige la force gravitationnelle exercée par le Soleil.
La force extérieure appliquée au satellite Titan est la force
gravitationnelle S/T
exercée par Saturne dirigée de T vers S.
3) Schéma
4) S / T
= (G.MS.MT /
RT2 ) .
5) On applique la 2ème loi de Newton au satellite
Titan dans le référentiel saturno-centrique supposé galiléen. : S
/ T = MT .
(G.MS.MT / RT2
) . =
MT .
;
= (G.MS / RT2
) .
6) = at .
+ an .
; at =
dv/dt et an = v2 / RT
7) = (G.MS
/ RT2 ) .
=
n ;
se réduit à la composante
n
.
8) = at .
+ an .
=
dv/dt .
+ v2 / RT .
=(G.MS / RT2 )
.
On a donc : dv /dt = 0 (1) et v2 / RT = G.MS / RT2 (2)
dv /dt = 0 , la vitesse est donc constante, le mouvement de Titan est uniforme.
9) (2) v2 / RT = G.MS
/ RT2 ; v2 = G.MS / RT ; v
= (G.MS / RT)
10) Le mouvement du satellite Encelade est circulaire et uniforme.
Le périmètre du cercle est 2 π RE. v = 2 π RE / T ; T = 2 π RE / v
11) T = 2 π RE / v = 2 π RE . (RE / G.MS )
; T2 = 4 π2
R3 / (G.MS) ;
T2 / RE3 = 4 π2
/ (G.MS)
12) RE3 = TE2
. G . MS / 4 π2 ; RE = 3 ( TE2
. G . MS / 4 π2 )
RE = 3 ( (1,37 x 24,0 x 3600)2 x 6,67.10-11
x 5,69.1026 / ( 4 x 3,142) ) = 2,38.108 m
= 2,38.105 km
13) Il faut que les périodes TS et TC soient égales pour que la sonde soit "saturno-stationnaire"
14) 3ème Loi de Kepler : TC2 / (RS + h)3 = 4 π2 / (G.MS)
(RS
+ h)3 = TC2 . G . MS / 4 π2 ;
RS + h = 3 (
TC2 . G . MS / 4 π2 )
h = 3
(TC2.G.MS
/ (4 π2) – RS = 3
(TS2.G.MS
/ (4 π2) – RS
15) h = 3 ((10 x 3600 + 39 x 60)2 x 6,67.10-11
x 5,69.1026 / ( 4 x 3,142)) - 6,0.107 =
5,2.107 m
h ≈ 52 000 km ( Ce résultat est du même ordre de grandeur que l'altitude d'un satellite géostationnaire de 36 000 km )
©Sciences Mont Blanc